
 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 1/31

FP7 Project 2007- Grant agreement n°: 218575

Project Acronym: INESS

Project Title: INtegrated European Signalling System

Instrument: Large-scale integrating project
Thematic Priority: Transport

WS D – Generic requirements

Deliverable D.1.5 – Report on translation of requirements from text to UML

Due date of deliverable 31/05/2009
Actual submission date 29/05/2009

Deliverable ID: D.D.1.5
Deliverable Title: Report on translation of requirements from text to UML
WP related: D1
Responsible partner: ProRail
Task/Deliverable leader Name: UIC
Contributors: C. de Courcey-Bayley

Start date of the project: 01-10-2008 Duration: 36 Months

Project coordinator: Paolo De Cicco
Project coordinator organisation: UIC

Revision: SB finalised Dissemination Level1: CO

DISCLAIMER
The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any

particular purpose. The user thereof uses the information at its sole risk and liability.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the INESS Consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the INESS consortium.

1 PU: Public, PP: Restricted to other programme participants (including the Commission Services), RE: Restricted to a group specified by
the consortium (including the Commission Services), CO: Confidential, only for members of the consortium (including the Commission
Services).

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 2/31

Document Information

Document type: Deliverable Report
Document Name: INESS_WS D_Deliverable D.1.5_ SB_Finalised_Report_Ver2009-05-29
Revision: SB_Finalised
Revision Date: 29-05-2009
Author: UIC
Dissemination level: CO

Approvals

 Name Company Date Visa

WP leader Khalid Agrou UIC 2009-05-27 OK

WS Leader Wendi Mennen ProRail 2009-05-28 OK

Project Manager Emmanuel Buseyne UIC 2009-05-28 OK

Steering Board - - 2009-05-29 approved

Document history

Revision Date Modification Author
0 2009-05-15 WS_Finalised C. de Courcey-Bayley
1 27/05/2009 TAB comments taken into account Khalid Agrou

SB_Finalised 29-05-2009 Richard VAUX / ALMA

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 3/31

TABLE OF CONTENTS

Section 1 – EXECUTIVE SUMMARY ..4
Section 2 – INTRODUCTION..4
Section 3 – REPORT ON TRANSLATION OF REQUIREMENTS FROM TEXT TO UML5
3.1 Overview ..5

3.1.1 Object Oriented Modelling ...5
3.1.2 The Unified Modelling Language...6
3.1.3 The modelling framework ..7
3.1.4 The Analysis Process ..8
3.1.5 The Development Process ..9
3.1.6 Models and objects ...10

3.2 Diagrams..10
3.2.1 Class Diagram...11
3.2.2 Class Properties ..12
3.2.3 Package Diagram ..15
3.2.4 Use Case Diagram ..15
3.2.5 State Diagram ...16
3.2.6 Sequence Diagram ..17

3.3 Organising the model...17
3.3.1 Modelling use cases ..17
3.3.2 Domain Object Modelling ..19
3.3.3 Identifying Events...23

3.4 Behaviour modeling ...24
3.4.1 Interaction Modelling ...24
3.4.2 State Modelling...25

3.5 Other modelling aspects..27
3.5.1 Results...28

Section 4 – CONCLUSIONS ...28
Section 5 – ANNEXES ...29
Appendix A UML Notation ...29
Appendix B Stereotypes ..31

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 4/31

List of abbreviations2

DOORS Dynamic Object Oriented Requirements System

GENERIS GENEric Requirements for Interlocking System

HAL Hardware Abstraction Layer

LCL Logical Concepts Layer

SELRED Structured English Language for REquirements Development

UML Unified Modelling Language

Section 1 – EXECUTIVE SUMMARY

This document is the report on the translation of requirements from text to UML corresponding to

deliverable DD1.5, as specified in the INESS Description of Work. It details the experience gained from

the Euro-Interlocking project in the domain of functional requirements modelling.

The target audience for the document are consumers of the GENERIS model, i.e. interlocking engineers

and developers interested in using the modelled requirements for further tasks such as transformations

and validation. It is helpful if the reader has some familiarity of abstract modelling languages, although

not necessarily of UML.

Section 2 – INTRODUCTION

 This document serves as a guideline to show how the various diagrammatic aspects of the Unified

Modelling Language have been used to represent the interlocking functional requirements in the Euro-

Interlocking project.

In the first part, it presents the object oriented modelling paradigm, together with the reasons for the

emergence of the Unified Modelling Language as a standard, and an architectural framework for

technical systems modelling. Then, the analysis and development processes are explained.

2 For the control/command and signaling terms, please refer to report DD1.1.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 5/31

In the second part, the five best suited diagrams for functional requirements modelling are presented,

with particular consideration given to those concepts used extensively in the Euro-Interlocking Generis

model. This part contains also various examples extracted from the Generis model.

Finally, the last part is a methodological guideline explaining how one can benefit from the elements

given in the previous sections in order to model the functional requirements in their static and dynamic

aspects. The methodology clarifies the objectives and provides the steps to follow to carry out a proper

modelling work. This is completed by illustrations from the Generis model.

Section 3 – REPORT ON TRANSLATION OF
REQUIREMENTS FROM TEXT TO UML

3.1 Overview

3.1.1 Object Oriented Modelling

One of the most important basic concepts of object orientation is that objects in a control system are
models of real-world objects. Object Orientation is a paradigm to decompose a system so that the
individual components:
• represent things of the real world
• encapsulate data and related functionality
• are replicable, i.e. can be instantiated as often as necessary
• can be generalised and specialised.

The resulting components may (or may not) be subsequently implemented as (software) classes in an
object-oriented programming language.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 6/31

Abstract
Model

(Specification)
Analysis

Realization

Operation Physical
Model

(Running System)

Real world

cst1:Customer

Name=Bill
Address=Seattle
Creditability=good

cst2:Customer

Name=Carol
Address=Boston
Creditability=average

car1:Car

Type=Volvo
Serial No=182-XA4-6B
Sales date=07-MAR-1998

car2:Car

Type=Cadillac
Serial No=FJ22-77AB
Sales date=28-JUN-1998

car3:Car

Type=Ford
Serial No=84B-X3-8391
Sales date=15-DEC-1998

Customer

Name
Address
Creditability

Car

Type
Serial No
Sales date

1
1..*

Abstract
Model

(Specification)
Analysis

Realization

Operation
Analysis

Realization

Operation Physical
Model

(Running System)

Real worldReal world

cst1:Customer

Name=Bill
Address=Seattle
Creditability=good

cst2:Customer

Name=Carol
Address=Boston
Creditability=average

car1:Car

Type=Volvo
Serial No=182-XA4-6B
Sales date=07-MAR-1998

car2:Car

Type=Cadillac
Serial No=FJ22-77AB
Sales date=28-JUN-1998

car3:Car

Type=Ford
Serial No=84B-X3-8391
Sales date=15-DEC-1998

Customer

Name
Address
Creditability

Car

Type
Serial No
Sales date

1
1..*

Figure 1: Object Models

Real life systems are often so complicated that they need to be simplified to be understood. Models
represent a reductive and incomplete version of reality. However, rather than this constituting a
weakness, by consciously omitting what is immaterial for a given perspective, models can be created
which reveal phenomena not easily observed in the real world and which can yield unexpected results
and relationships, leading to new ideas. A model is usually either descriptive or prescriptive. However, in
the case on GENERIS, the model is both, as it reflects requirements which often present an optimised
view of the current situation for each railway covered. This in itself does not matter, as long as it is clear
which perspective a model is intended to represent.
The goal of modelling requirements according to the object-oriented paradigm is to abstract concepts of
the real world that are relevant for the planned system. These abstractions are documented as classes
in a graphical form; the so-called class diagram. A class diagram describes the abstracted objects of the
real world as classes (bottom left in Figure 1), together with information about their relationships and
behaviour.

By running the realised system, ‘live’ instances of these classes are created (bottom right in Figure 1).
Each instance of such a class corresponds exactly to one object of the real world, its ‘original’. Finally,
the instances are viewed and manipulated by the users of the system. In UML an important distinction
exists between instances and the classes from which they come and it is perhaps worth mentioning here
that as this document is mainly concerned with the diagrammatic aspects of UML, the issues concerning
instances and the user-specific data with which they are configured will not be dealt with here, as this is
a theme in its own right which will be handled fully in a subsequent INESS document on testing and
validation (DD.4.2.1 Documented methods for expressing test cases in UML).

3.1.2 The Unified Modelling Language

The Unified Modelling Language (UML) was developed from 1995 as a consequence of a situation in
which there was no consensus as to how to develop and represent object-oriented software systems.
1997, UML was adopted as a standard by the Object Management Group (OMG), which is the largest

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 7/31

and most important non-profit organization that focuses on the establishment of vendor-independent
standards for the software industry. Following its publication in 1997, this long-awaited standard was
rapidly adopted by the software industry worldwide. Since then, several versions and updates of
standard “UML” have been published, of which Version 2.0, adopted by the OMG in 2003 was the most
important.

It is important to mention that UML is not a method that guides you through the development process, it
is merely a standardised language that defines how to represent (i.e. document) certain artefacts of an
object-oriented system. That means, although it defines how to represent certain aspects of the system,
it does not say anything on how to discover or elaborate those artefacts. UML just defines the syntax
and the semantics of various modelling elements that should be used to document an object-oriented
system.

Although UML has been developed by the software engineering community, it is important to note that it
is not limited to modelling software systems. It is a generally applicable modelling language to represent
the functionality of a system, based on the object-oriented paradigm. Today it supports various
application areas such as business engineering, specification of heterogeneous systems, software
requirements modelling, software architecture design, agent technology or hardware design.

3.1.3 The modelling framework

To assist in organising an interlocking requirements model, an architectural framework based on the
general framework for technical systems is presented in Figure . The interlocking system controls the
trains via track elements in the field, such as points, tracks and signals. These elements are controlled
by signallers via the interlocking system. The interlocking system itself is structured into the following
three layers:
• Hardware Abstraction Layer (HAL)

Abstracts the track elements into classes that encapsulate their safety-relevant functionality.
• Logical Concepts Layer (LCL)

Contains classes that abstract the logical concepts of an interlocking system such as routes, flank
protection, approach areas etc. Its functions are enabled by the existence of the classes identified in
the HAL.

• Operating Layer
Represents the black box view perceived by the operator. This black box view is mainly represented
as a set of use cases of the interlocking system. The model contains no traffic management layer,
which is usually to be found in a real interlocking implementation, as it is not central to the safety-core
of the interlocking as defined in the scope of the project.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 8/31

Figure 2: The Modelling Framework

3.1.4 The Analysis Process

The primary goal of the Analysis Process is to extract domain knowledge (Facts) from the domain
experts by means of suitable techniques (Fact Finding). These facts must then be precisely documented
(Fact Representation) which in turn may raise domain questions that must be clarified with the domain
specialists (Fact Validation).

FactFinding

Representation

Validation

Domain Expert

Requirements
Model

FactFinding

Representation

Validation

Domain Expert

Requirements
Model

Figure 3: The Analysis Process

Trains (Process to be automated)

Railways Infrastructure (Hardware)

Interlocking KERNEL(IL-K)

CONTROL

Operating Layer

Interlocking
System

Railway Staff

Points, Tracks,
Signals, etc.

Trains, Obstacles, etc. Trains (Process to be automated)

Railways Infrastructure (Hardware)

Interlocking KERNEL(I -K)

CONTROL

Operating Layer

Trains (Process to be automated)Trains (Process to be automated)

Railways Infrastructure (Hardware)

Interlocking KERNEL(-K)

CONTROL

Operating Layer

Hardware Abstraction Layer

Logical Controlling Layer

Operating Layer

Interlocking
System

Railway

Points, Tracks,
Signals, etc.

Trains, Obstacles, etc.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 9/31

UML only provides the means for Fact Representation, by allowing the formal representation of such
facts. For Fact Finding and Fact Verification, specific skills and engineering know how are needed to
elaborate the contents of the requirements model to be developed. In the Euro-Interlocking project, this
was undertaken by dedicated signal engineers conducting interviews with each country’s domain
experts and capturing the resulting functionality in a DOORS database. In turn, this database forms the
input for the modelling process. During modelling there was no fact elicitation between the modeller and
the signallers of the various countries, as it had been decided that the DOORS database had to be the
sole source of functionality – thus promoting consistency between the textual and modelled
requirements.

3.1.5 The Development Process

3.1.5.1 Context

The outcome of the fact-finding elicitation process illustrated above was that the system requirements
were established and recorded in DOORS. These were subsequently analysed in order to be expressed
in UML. In so doing the DOORS artefact was fundamentally considered as a basis to establish the
system boundaries, terms and requirements.
• System Boundary

When analysing complex functionality for a system with many interfaces, it is of paramount
importance to establish, as early as possible, what the scope of the system to be examined actually
is. This involves defining what is internal and what external to the system, what is controlled by it
directly, indirectly or not at all. The assumptions made during this process need be valid for the entire
project or else re-documented as they change over time.

• Terms
Terms are important for interlocking systems and form the foundation on which any further
requirements are built. These include nouns (concepts) as well as verbs (activities) and adjectives
(properties). When a railway entered the project, before its requirements could be captured, it was
important to map the terms used in their domain to the Euro-Interlocking glossary (or to create new
glossary entries where this was not possible) in order to establish that the concepts on which the
requirements are based were in fact common.

• Operational Requirements
Requirements that describe the desired functionality of the interlocking system. In other words: they
define the “positive” behaviour of the interlocking system as observed from outside the system.
These too have been captured and tagged so that the current GENERIS model contains the HAL
functionality of a number of different railways.

• Safety Functions
These are not safety constraints in the formal sense of invariants, but rather the functional safety
aspects which have been implemented in the guards that restrict certain functions at certain times,
varying on the state of the system.

UML diagram types and system analysis

Once the system boundary was set, these three broad types of requirements were initially formulated
textually according to the SELRED rules. However, to become more precise, more formality is required
and this is where UML diagrams can refine the textual requirements. The syntax of this transformation is
covered in the complementary requirements expression document on the UML language used in
GENERIS; the diagrammatic aspects will be dealt with in what follows.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 10/31

In the operational requirements it is mainly the verb terms that are used to derive use cases which
represent the black box view of the interlocking system. Important use cases were identified and then
further refined into sequence diagrams that illustrate the black box interactions between interlocking
users and the interlocking system as well as between the interlocking system and the railways
infrastructure to be controlled. This process has up until now, not progressed beyond listing the various
events crossing the user interface which are associated with the given use case on a sequence diagram
– i.e. no work has been done to show the chain of resulting system behaviour that follow such inputs,
however it would be hoped to build on this work and extend it in INESS, as this would be of central
importance to the validation work, once a more comprehensive test environment is available. Thus in
the GENERIS model, although sequence diagram activity between the system boundary and the system
is executable, that within the system is merely illustrative, and neither executable nor verifiable.

3.1.6 Models and objects

Most of what follows deals the specification model, but it is important not to forget the simulation, which
is based on the given model. While the model is a static representation of the given system, the
simulation is its living realisation, which is created by bringing together instances of the model’s classes
and the data with which it is to be configured.

This distinction is important and there is even a separate vocabulary in UML which differentiates the
world of classes from that of living objects (instances). This document is primarily concerned with the
class model, but it is worth briefly discussing instances. They are based on the classes of the model and
are infinitely replicable; they have all the properties of the class from which they are created, but the
data values of these properties may well vary from instance to instance as determined by the
configuration values. These differences are what makes the model specific and are also in fact what
make it realistic and interesting to the domain users, but given the virtually infinite number of
permutations of data configuration settings that can be instantiated, they also restrict the possible
completeness of any model validation work, making it harder to prove that the model will act correctly in
all circumstances. However in the case of the INESS model, this restriction does not matter, as no
specific application needs to be validated, but merely the specification on which it would be based. This
means that once the specification has proved that a given rule is guaranteed, no further testing of that
function is required. Nonetheless, the interaction of the model with the configuration data means that the
Data Preparation work is, at least indirectly, part of the requirements. This matter will be examined in
detail during work in the INESS project concerning the modelling of the validation requirements
specification.

3.2 Diagrams

UML is mainly a graphical language. It has a set of thirteen diagram types, each of which represents a
specific view of the system to be represented. In the context of interlocking systems, the following
diagrams are considered as most important:
• Use Case Diagram

Represents the functionality of the system from a black box perspective.
• Class Diagram

Represents the (glass box) decomposition of the system into its (logical) components (i.e. classes) as
well as their associations and properties.

• State Diagram
Precisely specifies the behaviour of an individual class in terms of its states and the transitions
between them.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 11/31

• Sequence Diagram
Illustrates the interactions between two or more objects which can be (sub-)systems, classes, or
users.

Figure 4: An overview of the UML Diagram types

The diagrams described above are sufficient to represent the requirements of an interlocking system in
an implementation-independent way. In the following section, each diagram will be discussed in as far
as is relevant for its influence on the expression of the requirements. Other diagrams of the UML
represent aspects of the actual implementation of an object-oriented system, which is beyond the
context of this document. A brief summary of the UML notation can be found in Appendix A of this
guideline.

Structural Diagrams

3.2.1 Class Diagram

We have noted that the domain object model is derived from the terms identified and defined in the
requirements. In general domain objects tend to be noun terms, and their attributes and associations
tend to derive from adjectival terms. The individual domain objects can be represented in UML via
classes. Classes themselves are abstractions of entities that encapsulate a delineated part of system
and contain properties that are, in general, unique to it. Grouping classes together in a diagram enables
the static decomposition of the system to be shown in terms of its various defined components (i.e. the
classes themselves) as well as these links (associations) and properties (attributes).

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 12/31

HAL

Key-locked point

/key_left
/key_right
/key_in_place
release_delay_timer
detectors_present
keys_present

Key-lock without detector FI

Key-lock with detectors FI

Key-lock without detector PT

Point PT

self_restoring
self_restoration_timer
default_ position

Point

/is_left
/is_right
/position
/moving
/detected
/trailed
/fouled
fouling_mitigated
/locally_released
/not_locally_released
/element_FL_monitoring

Power point

/is_failed_left
/is_failed_right
/moveable_normal
/moveable_occupied
/moveable_by_route
/moveable_for_flank
/moveable_from_LPCP
physical_direction
operation_timer
default_selective_postion
non-fouling_position
non-fouling_DX_leg

Key-lock with detectors PT

Point detector

/moveable_when_trailed

Derailer

Key-lock releaser FIKey-lock releaser PT

Coupled point

/coupled_trailed
/coupled_failed
/member_blocked

Point NL

Point FI

/spp_active

Point CH

SPP

Route blocking

/route_blockable

Flank locker

/LSA_release_requested
/associated_signal_providing_FP
/flank_locked
/element_FL_available
/flank_locked_by_delegation

Route locker

/route_body_locked
/body_or_overlap_locked
/marked
/shunt_route_locked
/main_route_locked
/overlap_locked
/element_MR_available
/element_OL_available
/element_SR_available
/element_MR_monitoring
/element_OL_monitoring
/element_SR_monitoring
/train_operated_route_release

Automatic operation

/auto operation enabled

Track element

/failed
/available_inside_LSA
/blocked

Key-locked point

/key_left
/key_right
/key_in_place
release_delay_timer
detectors_present
keys_present

Key-lock without detector FI

Key-lock with detectors FI

Key-lock without detector PT

Point PT

self_restoring
self_restoration_timer
default_ position

Point

/is_left
/is_right
/position
/moving
/detected
/trailed
/fouled
fouling_mitigated
/locally_released
/not_locally_released
/element_FL_monitoring

Power point

/is_failed_left
/is_failed_right
/moveable_normal
/moveable_occupied
/moveable_by_route
/moveable_for_flank
/moveable_from_LPCP
physical_direction
operation_timer
default_selective_postion
non-fouling_position
non-fouling_DX_leg

Key-lock with detectors PT

Point detector

/moveable_when_trailed

Derailer

Key-lock releaser FIKey-lock releaser PT

Coupled point

/coupled_trailed
/coupled_failed
/member_blocked

Point NL

Point FI

/spp_active

Point CH

SPP

Route blocking

/route_blockable

Flank locker

/LSA_release_requested
/associated_signal_providing_FP
/flank_locked
/element_FL_available
/flank_locked_by_delegation

Route locker

/route_body_locked
/body_or_overlap_locked
/marked
/shunt_route_locked
/main_route_locked
/overlap_locked
/element_MR_available
/element_OL_available
/element_SR_available
/element_MR_monitoring
/element_OL_monitoring
/element_SR_monitoring
/train_operated_route_release

Automatic operation

/auto operation enabled

Track element

/failed
/available_inside_LSA
/blocked

*

1
coupler

coupled

Figure 5: The sub-types of “point”.

3.2.2 Class Properties

3.2.2.1 Associations / Roles

The class diagram is perhaps one of the most powerful graphical expressions of the requirements. By
illustrating the architecture for a system, this diagram type allows the permissible relationships between
the logical components defined in the system to be shown. This is achieved via associations which set
out the relationships between the system’s defined entities. All associations in the model are driven by
the requirements. This diagram type allows it to be specified, for example, that a point ‘knows’ the track
section in which it appears. Furthermore, this concept can also be used to quantify the number of
particular objects of a given type that another object can be linked to. For example whereas a lockable
device belongs to at most one track section, a track section can have an unlimited number of lockable
devices associated to it. This concept can very powerfully and simply constrain the model to fulfil the
requirements. Simply put, any given object that is compelled by the requirements to know about the
status, or influence the behaviour of another object needs a defined relationship to that object. This does
not need to be a direct link, but if the model is to remain clear, it is often best if it is. Once this link exists,
it is a matter of the data configuration as to how it is populated (i.e. which particular instances are linked

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 13/31

to one another), but no relationship will be allowed that contradicts the associations and multiplicities
declared on the class diagram. Thus the dependencies between the various modules in DOORS can be
formally specified in the model without any text being used whatsoever.

In the GENERIS model, it is the general philosophy that each end of a given association between two
objects be named; in UML this is called the ‘role’. The reason for this is it enhances both the clarity of
the model and enables the syntax of the expressions to more closely follow the linguistic style of the
textual requirements. This concept was analysed in detail in the requirements expression document. A
few further features of roles as used in the GENERIS model are given here:

• All roles can be navigated in both direction

• If no role name is present, the target class name can be used as its proxy

• Roles must be distinct if more than one association binds two classes

• Role multiplicities can be used as a constraint on an association

By stating that all roles are bi-directionally navigable, it is implicit that no objects are stored in attributes
on an instance. This would both deviate from the nature of a declarative model, in which relationships
are graphically visible and would also have the consequence that whereas the object on which the
attribute appears would know the target object, the opposite would not be true, and thus there would
exist only a uni-directional relationship between the two entities.

3.2.2.2. Inheritance: Generalisation/Specialisation

The second fundamental feature of classes is their ability to inherit properties from one another. This is
achieved via the generalisation / specialisation relationship. By virtue of this it is possible to specify facts
which are common to a number of objects only once and have each object “inherit” these properties as
need be. This is a powerful mechanism for increasing the clarity of a model and for avoiding redundancy
and the errors to which it generally leads. A few further features of generalisation / specialisation as
used in the GENERIS model are:

• All inheritances are disjoint and there is no class transformation

• No abstract classes (leaves) are ever instantiated

• An instance is a union of all the state compartment ‘slices’ of its own and its parent classes

• All the slices’ state machines of an instance run in parallel

• Diamond inheritances are correctly supported.

By disjoint, it is understood that no overlaps are permitted between the instances of sub-classes. To
take an example from Figure 5, an instance of a track element may be a flank locker or a route locker,
but it cannot be both and nor can it change from one to another while keeping the same identity. i.e.
flank lockers and route lockers are separate entities. By stating that there is no class transformation, it is
meant that an instance is not dynamic and thus its properties are persistent for its life-cycle.

By stating that no abstract classes are ever instantiated, it is meant that objects are only ever created
from class ‘leaves’ (sub-types). In the case illustrated in Figure 6, this would mean that although the
class key-locked point is entirely valid, it would never be instantiated without a national type being
chosen (Finland for FI and Portugal for PT). In addition, both countries know two types of key-locked
point and either type needs to be chosen to create a valid instance. This means implicitly that the top
three classes would never be instantiated on their own, as they do not incorporate the complete
functionality of the track element and thus a valid key-locked point object would always also have to
include one of the four classes at the bottom of the diagram.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 14/31

HAL

Key-locked point

/key_left
/key_right
/key_in_place
release_delay_timer
detectors_present
keys_present

Key-lock releaser FI

Key-lock without detector FI

Key-lock with detectors FI

Key-lock releaser PT

Key-lock without detector PT

Key-lock with detectors PT

Key-locked point

/key_left
/key_right
/key_in_place
release_delay_timer
detectors_present
keys_present

Key-lock releaser FI

Key-lock without detector FI

Key-lock with detectors FI

Key-lock releaser PT

Key-lock without detector PT

Key-lock with detectors PT

Figure 6: The Key-locked point and its sub-types.

When classes with a diamond form of inheritance (see the example of Point CH and Power point in
Figure 5) are instantiated only one instance of the state machine in the super class will be created.
Expressed in terms of the cited example from Figure 5, despite the ‘double inheritance’ of the class
Power Point via both SPP and Point Detector an instance of Point CH will only have one instance of the
slices from the class Power point.

3.2.2.3 Attributes

An attribute is a property of a class, which enables data about a given instance to be stored and referred
to in the execution of the functionality of the class’s state machine. In GENERIS many attributes are
used for defining the data constants of the model, such as timers or route types, or else for variables
such as the direction of a track in a route. However, UML also offers an attribute type, the value of which
can be calculated from other attributes or states in the same or even other classes. This is the derived
attribute and it is designated in UML by a leading slash symbol, e.g. ‘/failed’.

Such derived attributes have been extensively in the Generis model (see Figure 5), especially to provide
information to both the system (and the glass box user) in a manner as close to natural English as
possible, without compromising the formality of the model. Many derived attributes’ expressions are
based on the values of other derived attributes, but in general most are simple Boolean derivations.
However, occasionally more complex rule sets are used, which enable complex functionality to be
invoked in the minimum of space and complexity. For more details on the expression language used in
the attributes of the GENERIS model see the requirements expression document.

Attributes can also be ascribed differing levels of visibility, according to whether or not it is desired for
their value to be accessible via associations (in which case they are ‘public’), via generalisation /
specialisation relationships (for which they are declared ‘protected’) or not at all to any external class;
(‘private’). While in object-oriented design, it is generally preferred to keep attributes private to control
access to the data, in the GENERIS model the derived attributes are often used to define the interface
between objects; the place at which private class-relevant information is made available in a declarative
manner and thus many derived attributes have been made public.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 15/31

In addition, these further points about attributes in the GENERIS model are worth noting:
• The multiplicity of the attributes is always 1

• Declared attributes are static for the given instance over its entire life-cycle

• No data types are used

That the GENERIS model has no data types is largely the result of the fact that their inclusion would
have added little in the context for which the model was to be used in the Euro-Interlocking project.
Given that the INESS project foresees undertaking formal verification, data types could be included in
the INESS model, if it can be shown that there is some validity in terms of the verification work of, say
proving that a Boolean derived attribute has indeed been assigned a Boolean value.

To state that the multiplicity of a declared attribute is 1 means that it should not be ‘nullable’ (which is
not to say that it cannot have the explicit value ‘none’ or ‘null’, but rather to state that it should not be
empty). However, as the simulation environment does not currently enforce the lower end of a attribute
multiplicity, and the fact that this was anyway not central to the scope of the GENERIS model, little effort
was spent to check the correctness of attribute population in the model at instantiation. Again, if the
validation and verification work were to show that this would be of interest, its enforcement could be
considered in the elaboration of the INESS model.

By stating that attributes are static over their life time, this does not mean that their values will not
change, but just as objects will not be transformed, so the rules behind the apportionment of the values
of attributes will not change once the given object has been instantiated.

3.2.3 Package Diagram

There is no special functionality associated with the diagram type, but given the complexity of the
GENERIS system specification, its use helps to show the various relationships of blocks of related
classes. Figure 5 is an example of this form of diagram, created to show that various types of points
that occur in the model.

Behavioural Diagrams

3.2.4 Use Case Diagram

Diagrams of Use Cases represent the functionality of the system from a black box perspective. For the
scope of the GENERIS project, this diagram type was only used to constrain interface events to
particular users (Actors in the UML terminology, which can be considered as a special type of class).
The distinction between whether or not the event can be raised on a particular object and who is
authorised to raise it is an important one, worth describing in an example. Both a signaller and an local
operator in the field have permission to move a set of points, but not at the same time; as this
permission is carefully allocated. However by allocating each an event with which they can move the
point and defining that the event is accessible to an actor via a particular use case, the signaller will not
have access to the local operator’s event and vice versa. Thus the system’s core does not need to know
about the allocation of external permissions (which are anyway beyond its scope), as it is dealt with at
the system interface. The net effect of this is that certain written requirements can be implemented at
the boundary to the system by simply allocating the use of certain commands to certain users. Thus
desired functionality can be achieved while also safeguarding certain model invariants – i.e. that given
functionality should only be available to a given user in certain circumstances, or indeed not at all,
without the use of any textual constraint. However, it should be noted that merely having the event
available does not necessarily mean it will be executed and that brings us to the next diagram type,
which has been used to capture most of the complex functionality of the system.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 16/31

3.2.5 State Diagram

This diagram type precisely specifies the behaviour of an individual class in terms of its states. It
provides a dynamic view of the object under examination, through the use of events, states, state
transitions, guards, and actions. State diagrams will be used in the INESS model to represent the
functionality of the interlocking specification and thus they are correspondingly complex. Each identified
class will be given a state diagram in which the functionality most appropriate for that element will be
placed. In general the name of the class guides and the attributes of the class provide the input for the
functionality for the state machine, but the actual ‘positive’ functions of the class are specified in the
actions of the state diagram itself. The main feature of this diagram type is in the states and the
transitions between them. The initial state transition occurs by virtue of the birth event, which causes the
initialisation of an object of that class as well as the first transition from the birth state. What happens
subsequent to that is entirely dependent on the functionality of the object in question and can be read in
the various examples of this diagram type that follow.

active
<ic> set track direction/'direction' := 'pTrack_direction';
physically

not occupied
Entry/out(type, 'id', '<s> not occupied');

occupied
Entry/out(type, 'id', '<s> occupied');

undetected
Entry/out(type, 'id', '<s> undetected');

pending

failure

failednot failed

logically

not occupied
occupied

Entry/say (type, 'id', 'fouled');

physically

not occupied
Entry/out(type, 'id', '<s> not occupied');

occupied
Entry/out(type, 'id', '<s> occupied');

undetected
Entry/out(type, 'id', '<s> undetected');

pending

not occupied
Entry/out(type, 'id', '<s> not occupied');

occupied
Entry/out(type, 'id', '<s> occupied');

undetected
Entry/out(type, 'id', '<s> undetected');

pending

failure

failednot failed failednot failed

logically

not occupied
occupied

Entry/say (type, 'id', 'fouled');not occupied
occupied

Entry/say (type, 'id', 'fouled');

<dv> TVP not detected/

/

when('/logically_occupied')/

when(not '/logically_occupied')/
send '<ic> logically unoccupied';

<dv> not occupied/

<dv> occupied/

/

<dv> TVP failed/

Track/
'direction' := #none;
'/failed' := (in_state(#'active'.'failure'.'failed'));
'/occupied' := (in_state(#'active'.'physically'.'occupied'));
'/fouling' := ('/occupied' and not exists 'fouling mitigator' is_true ('fouling_mitigated'));

<dv> not occupied/

<dv> occupied/

/

when(in_state(#'active'.'logically'.'not occupied'))/
<ic> logically unoccupied/

Figure 7: The state diagram of a track section.

The various transitions between the states are triggered by events – the nature of which can be various.
An event may arise as the result of an input from an external (see the example of ‘<dv> occupied’ in
Figure 7 above) or internal user (not used in GENERIS), or from the system itself (‘<ic> logically
occupied’ in Figure 7). It can be triggered by the passage of a defined period of time or even by certain
predefined criteria in this (any when event on the same diagram), or any other state. State transitions
are usually undertaken for a purpose, something discrete to the object itself, such as a change in its
status. However quite often this status change is also the trigger for an action to be undertaken as a
result of this transition.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 17/31

Generally speaking, an event will be handled by those states which are in a position to receive it at the
time it was raised. However, as an event may also be of interest to the entire state machine, by
modelling it on the super state it can be handled globally. All the examples of events with the stereotype
<dv> in Figure 7 are such events; because if something is reported from the field it needs to be acted
upon without condition.

Although simple objects tend to have statuses that are mutually exclusive (‘locked’ or ‘not locked’ for
example), certain other objects may be more complicated and have state properties that exist in parallel.
This information can also be captured via a state diagram by the use of state compartments. The state
diagram for the Track Section in Figure 7 has three of them.

3.2.6 Sequence Diagram

Strictly speaking in the UML, a sequence diagram shows both the interaction and sequence of given
messages between the various instances of a system; giving a dynamic view of the area under
examination. In the context of the GENERIS project however, this form of decomposition is of little
benefit, as the ‘system’ under investigation is a black box specification and not an implementation; thus
in this context this diagram type has a different purpose. A sequence diagram is defined for each use
case that serves to identify the events (messages) available to that use case, as mentioned in chapter
3.2.4. This has the effect of defining the scope of each actor’s interaction with the system and can also
illustrate the interactions between two or more partners which can be instances of (sub-) systems,
classes, or users.

The diagrams described here are quite sufficient to represent the requirements of an interlocking system
in an implementation-independent way. Other diagrams of UML represent aspects of the actual
implementation of an object-oriented system, but this is out of the context of this project. Now, we shall
look at the methods for applying each of these diagram types.

3.3 Organising the model

Objectives

The main objectives of this activity are:
• Defining the boundaries of the system to be modelled.
• Making the model navigable, maintainable and scalable by separating concerns into different

packages
• Use as many class diagrams as necessary to illustrate the system context

3.3.1 Modelling use cases

Objectives

The main objectives of use case modelling are:
• Identification of the main functionalities of the system seen from a black box perspective
• Identification of the main actors outside the system and their relationship to the identified

functionalities

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 18/31

• Understanding the main functionalities from a user’s perspective and to identify important terms.

In general, it can be stated that a use case is typically performed by human actors pursuing a certain
goal which is to be achieved within a reasonably short time period. However, as mentioned above, the
GENERIS use cases are not particularly ‘goal-oriented’. In the INESS project, this should probably be
approached differently.

Elaboration

The steps in the creation of Use Case Diagrams can consist of defining:
• Flow of activities among controllers (typically humans)
• Flow of activities within the system to be controlled
• To identify the events which are to cross the system boundaries (both commands and statuses)
• Identify actors
• Identify and describe basic use cases
• Factor-out common fragments
• Identify extensions and specialisations between use cases as necessary
• Consolidate
• Model black box sequence diagrams (see chapter Erreur ! Source du renvoi introuvable.)

3.3.1.1 Example

The following diagram shows the use cases of the Generis model. There are two actors, “local
signaller”, who has the commands of a normal train dispatcher, and “tester”, who is able to do
everything which the “local signaller” can do and in addition can interact directly with the status of the
physical elements in the field in order to produce disruptive situations to check that the model behaves
properly when faced with the degraded performance of elements beyond its context. No other actors,
such as “train” have been defined, as the tester is able to act as 100% proxy for it.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 19/31

tester

local signaller

manipulate
signals

manipulate
tracks

manipulate
points

manipulate local
shunting area

panel

manipulate
line block

operate
tracks

operate
lockable device

set route

operate
line block

manipulate
level crossing

operate
key-locked

point

operate
derailers

occupy
tracks

operate
moveable
elements

operate
signals

operate
points

operate level
crossing

cancel route

manipulate
lockable device

operate local
shunting area

manipulate
derailers

manipulate
moveable
elements

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 8: The Use Case Model

3.3.2 Domain Object Modelling

3.3.2.1 General

The Domain Model identifies the concepts of the interlocking system, along with their significance and
describes the interactions and dependencies between these concepts. The creation of the Domain
Model generally promotes a common understanding of the context of the system. In addition it serves an
important basis for the data to be administered by the system as well as its rules. These rules are often
also cited in various of the Use Cases, as well as the user interfaces. The Domain object needs to be
constantly updated over the life cycle of the model, so that it reflects changes in the scope or the context
of a given project, thus allowing inconsistencies to be easily identified. The creation of the Domain
Model needs to conform to the context of the system as defined in the textual requirements and ensures
that the scope of the model is always synchronized with the that of the domain expert providing the
requirements.

Objectives

The main objectives of domain object modelling are:
• Identification of the physical “things” to be directly controlled by the system
• Identification of the abstraction of the physical “things” controlled by the system
• Identification of the logical “concepts” to be abstracted in the system

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 20/31

• Understand the associations among the “things” and “concepts”
• Establishing a precise definition of important terms as a solid foundation for further modelling.

Elaboration

Perform the following steps to elaborate the domain object model, starting from the modules as
presented in the DOORS database:
• Capture and classify the physical objects of the real world
• Identify LCL objects from logical objects in the real world
• Model associations with cardinalities among objects
• Identify generalisations of objects and any model specialisations
• Consolidate
It is generally very helpful to the identification of the domain objects of both the HAL and the LCL that
the DOORS modules have already been conceived in a manner that closely mirrors the classes to be
used in the model. It is helpful to organise the domain objects on more than one class diagram; this is
especially true once the number of classes begins to explode. In the GENERIS model the approach
taken has been to have diagrams:
• showing the associations between the super classes of the HAL and the various corresponding

classes of the LCL (see Figure 9).
• showing the breakdown of the LCL layer (see Figure 10)
• showing the super classes of the LCL layer
• showing the super classes of the HAL layer
• showing the sub-types of one type of physical element - point or signal etc. (see Figure 5)
• showing individual LCL concepts such as route, local shunting area etc.

The following class diagram shows an overview of the interlocking System in terms of the abstract
classes of the physical elements and the logic classes for dealing with the route concepts and the
multiplicities between them.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 21/31

LCL

Track element in path
Signal in path

TVP in path

Route locker in path

Flank locker in path

Point in path
Lockable point in path

Track in path

TVP in route

Track section in path

Level crossing in path

Track element in path
Signal in path

TVP in path

Route locker in path

Flank locker in path

Point in path
Lockable point in path

Track in path

TVP in route

Track section in path

Level crossing in path

HAL

Signal

Route locker

Track element

Flank locker

Track

Point

Line block track

TVP section

Level crossing

Signal

Route locker

Track element

Flank locker

Track

Point

Line block track

TVP section

Level crossing

*

1track element

track elements in path

*
1 pointpoints in path

*

1

tvp

tvps in path

* 1

route locker
route lockers in path

1*
track sections in path track

*

1
level crossing

level crossing in path

*

1

signalsignals in path

* 1

flank lockerflank lockers in path

1

*

moveable element

influencing track

0..1*
advance signal track in rear

Figure 9: The Domain Object Model

The diagram above shows a view of the entire architecture of the system, but at a very high level. Only
the super class of each type is shown, in order to give a rough idea of the system. Having a diagram at
such a low level of detail can still be useful, as when the number of classes is high, even restricted class
diagrams can quickly become complex and choices need to be made between comprehensibility and
usability.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 22/31

LCL

TVP in path

route direction-
/subroute_monitoring_ok+
/onward_signals_fine-
/sequentially_occupied+
/preceeding_tracks_free+
/previous_sequentially_occupied-

TVP in main route

/change_in_occupation+
/DOS_route_occupation+

TVP in shunt
route

TVP in overlap

Route locker in path

/is_main_route_locked+
/is_shunt_route_locked+
/is_overlap_locked+
/is_locked+
/is_route_body_locked+
/element_correct_for_route#

Track element in path

/route_precondition_ok+
/monitoring_condition_ok+
locking_type+

Signal in path

/manually_replaced+
/element_set_up+
/path_initiated+

Flank locker in path

/is_flank_locked+
/element_correct_for_flank+
/is_dependency_locking+
/is_dependency_locked+
/dependency_active+

Signal flanking route

Lockable point in path

/point_to_move-

Point in main route

Point in shunt routePoint in overlap

Subroute signal in path

/advance_subroutes_at_proceed-

Entry signal

/reclearing+
/berth_occupied+

TVP in route

not_permitted_occupied-
destination_tvp-
occupied_for_DOS-
/TVP_marked+
/moveable_element_in_DT+

Reserved path

/available+
/monitoring+
/immediately_cancellable+
/initiated+

Track section in path

/occupied_physically+

Point in path

route position-
LSA active-
/point_marked+

Point flanking LSA

Signal flanking LSA

Exit signal

Point in
approach

Track in path

Flank zone

safe_direction-

Track in approach

/valid_approach_occupation+

Route

/signalling_conditions+
/residual_releaseable+
/cancel_with_delay+
/disrupted+
/train_in_route+
/all_train_in_DT-
/destination_release-
route_type-
overlap_release_timer-
signal_cleared-
direction-
DOS_route-
DOS_permitted-
opposing_permitted-

Point in LSA

/is_locally_released+
/local_release_suspended+

Signal in LSA

/is_cancelled+
/is_cancellable+

Lockable device in path

Point flanking route

Logical line block

Opposing signal

/train_turned_back+
turnback-

TVP in path

route direction-
/subroute_monitoring_ok+
/onward_signals_fine-
/sequentially_occupied+
/preceeding_tracks_free+
/previous_sequentially_occupied-

TVP in main route

/change_in_occupation+
/DOS_route_occupation+

TVP in shunt
route

TVP in overlap

Route locker in path

/is_main_route_locked+
/is_shunt_route_locked+
/is_overlap_locked+
/is_locked+
/is_route_body_locked+
/element_correct_for_route#

Track element in path

/route_precondition_ok+
/monitoring_condition_ok+
locking_type+

Signal in path

/manually_replaced+
/element_set_up+
/path_initiated+

Flank locker in path

/is_flank_locked+
/element_correct_for_flank+
/is_dependency_locking+
/is_dependency_locked+
/dependency_active+

Signal flanking route

Lockable point in path

/point_to_move-

Point in main route

Point in shunt routePoint in overlap

Subroute signal in path

/advance_subroutes_at_proceed-

Entry signal

/reclearing+
/berth_occupied+

TVP in route

not_permitted_occupied-
destination_tvp-
occupied_for_DOS-
/TVP_marked+
/moveable_element_in_DT+

Reserved path

/available+
/monitoring+
/immediately_cancellable+
/initiated+

Track section in path

/occupied_physically+

Point in path

route position-
LSA active-
/point_marked+

Point flanking LSA

Signal flanking LSA

Exit signal

Point in
approach

Track in path

Flank zone

safe_direction-

Track in approach

/valid_approach_occupation+

Route

/signalling_conditions+
/residual_releaseable+
/cancel_with_delay+
/disrupted+
/train_in_route+
/all_train_in_DT-
/destination_release-
route_type-
overlap_release_timer-
signal_cleared-
direction-
DOS_route-
DOS_permitted-
opposing_permitted-

Point in LSA

/is_locally_released+
/local_release_suspended+

Signal in LSA

/is_cancelled+
/is_cancellable+

Lockable device in path

Point flanking route

Logical line block

Opposing signal

/train_turned_back+
turnback-

1

1..*
main route tvp

route from main tvps

*
1

associated tvp

moveable element in route

* 1route from approach

approach track

1

0..1

device in path track from device

*

1

route

points in path

*

1 route

TVPs in path

1

* provider

releaser

0..1 0..1prev next

*

1route from overlap

TVPs in overlap

0..1 0..1

releasing

providing

1

1
route from exit

exit signal

1

1
route from entry

entry signal

*

1

track in activation zone

protecting point

1*assoc tvp subroute signal

0..1 0..1
routeline block for route

*

1

route from opposing signals

opposing signals

*

1
rp from track elements

track elements in path

*

1 route

signals in path

Figure 10: The Logical Concepts Layer, showing most of the generic and railway-specific sub-types.

The above figure shows part of the previous figure, but in more detail. This concept can also be used for
breakdown the presentation of the functionality of physical elements. Again, this is recommendable once
the number of classes has expanded to degree that they cannot feasibly be presented on one single
diagram.

3.3.2.2 Generalisation / Specialisation

All of the objects to be identified will already be represented somehow in the textual requirements,
however, there may also be common functionality across a number of these objects. In such cases
functionality can be factored out and presented in a super class. The process by which this is done is
basically one of constant iteration and re-factoring. The basic assumption to be made is that things are
always different from one another until it can be proved that they are in fact not, at which point the
commonalities between them can be extracted and remodelled in a common super class. It is better to
assume that things are different and then bring commonalities together than vice versa – i.e. assuming
everything is the same and then to look for differences. This is because it is better to compare two class
which have been created to fulfil a particular purpose and then see that there is in fact redundancy
between them which can be factored out, than to endlessly tweak a single class that is being forced to
behave as what are in fact two separate entities, in the hope that some sort of compromise between the
two is possible.

The motivation that drives abstracting out common functionality is to avoid redundancy and with it
comes the hope that although there will be a larger final amount of classes when the model is finished,
each function should only ever be modelled once in the entire model; thus easing the task of identifying
where corrections are necessary when faults are found and equally simplifying the process for changing
management.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 23/31

3.3.3 Identifying Events

Objectives

The main objectives of this activity are:
• Identification of commands sent to the system by the external actors
• Distinguishing the “external” commands from the “internal” events produced and consumed by the

system.
• Identification of status indications sent by the system to the external actors
• Identification of detected values sent to the system by the field elements
• Identification of steering values sent to the field elements by the system

Elaboration

Apply the following techniques to find events:
• Identify events from black box sequence diagrams

Within a use case, what commands need to be sent to the system?
What status indications are returned to the actor during a use case?
What detected values may be received by the system during a use case?
What steering values are emitted by the system during a use case?

• Use the following checklist for identifying events based on domain objects:
What events cause an object to react somehow (e.g. by sending another event)?
What events cause an object to react differently afterwards (i.e. changing its internal state)?

• Describe the events and, if necessary, specify any event parameters.

Events

The identification and sending of events is particularly important at the system boundary, as the raising
of events is the only means by which external actors can interact with the system and by which external
track elements can be both commanded and monitored. Within the system itself, the use of events is
largely discretionary, and their presence is very much the result of the chosen modelling style. This is
because whether an event is sent as a result of a change in conditions, or whether a ‘when’ event
automatically detects the same status change and reacts accordingly is immaterial.

Parameters

Signal events, as opposed to ‘when’ events can easily be configured to carry configuration data in the
form of parameters. These are simply appended to the event and populated at the time the event is
sent, usually by data from the instance from which the event originates. Few parameters are used in the
GENERIS model (apart from in the class that sets up all the instances and configures the layout of the
tracks), as most data values that are sent are constants.

Event Naming Convention

In GENERIS the following naming conventions has been applied as far as possible:

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 24/31

• For commands and steering values: action object [predicate]

• For status indications and detected values: object [not] predicate

• In general always use “not” for the opposite of something, rather than looking for an antonym.

3.4 Behaviour modeling

3.4.1 Interaction Modelling

Objectives

Interaction diagrams show the interaction between two or more entities that solve a common problem by
collaboration. In the context of INESS this means defining black box sequence diagrams to show the
interactions between the system and its environment within a specific use case.

Elaboration

For black box sequence diagrams:
• Create a new diagram for the use case to be described
• Add the events that are raised outside the system but going into the system

3.4.1.1 Examples

The following diagram shows the interaction between the signaller and the interlocking system, as well
as the interaction between the interlocking system and the field elements during the use case “move
point”.

Figure 11

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 25/31

3.4.2 State Modelling

Objectives

The main objectives of state modelling are:
• Elaboration of the life cycle of objects inside the system
• Identification of events that are relevant to an object
• Precisely specifying the permissible sequence of events of objects
• Precisely specifying the (re-)actions of an object to the occurrence of an event.

Elaboration

For each HAL object, then for each LCL object:
• Identify states
• Organize states into disjoint groups
• Differentiate between sequential states (which are mutually-exclusive) and parallel states (which

belong in separate state compartments)
• Organize states and events/transitions for the "normal" sequence
• Add guards
• Add exceptional sequences
• Add actions, including outputs to drive the user GUI.
• Consolidate

State Diagram Semantics

Assume the following semantics for any state machine modelled by a state diagram:
• Events that are not mentioned on a state diagram are ignored by that object.
• Events that are specified for the current state of an object cause the specified actions.
• When a guard evaluates to FALSE, the corresponding event is ignored by that object.
• Events that are not specified for the current state of an object but for one of its other states are

rejected, i.e. signalled as an error.
• The behaviour specified in a super state is inherited (i.e. implicit) for all its sub states.

State machine “slices” and concurrent states represent concurrent state machines.

3.4.2.1. Examples

As the chosen modelling style of the GENERIS project tends to minimise internal events, the logical
elements of the interlocking specification, which do not need to directly reflect the statuses of the
physical elements in the field are rather static. Thus in contrast to the diagram shown in chapter Erreur !
Source du renvoi introuvable. above, the LCL diagrams have far fewer state transitions, or even have
none at all.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 26/31

created

TVP in main route/
tie to pReserved_part via 'route from main tvps';

'locking_type' := #main;

'/route_precondition_ok' :=
 ((not ('tvp'.'/overlap_locked' and 'route direction' \= 'tvp'.'direction') and 'tvp'.'/element_DOS_available' if 'route'.'DOS_route' and '/DOS_route_occupation');
 not ('tvp'.'/overlap_locked' and 'route direction' \= 'tvp'.'direction') and 'tvp'.'/element_MR_available' otherwise);

'/monitoring_condition_ok' :=
 (('route direction' = 'tvp'.'direction' and (not '/sequentially_occupied') and 'tvp'.'/element_DOS_monitoring' if 'route'.'DOS_route');
 'route direction' = 'tvp'.'direction' and 'tvp'.'/element_MR_monitoring' otherwise);

'/change_in_occupation' := ('tvp'.('/track_became_unoccupied' or '/track_became_occupied'));

'/DOS_route_occupation' := ('occupied_for_DOS' and 'tvp'.'/occupied');

Figure 12: State diagram of the Track Section as used in a main route

in use

released
Entry/out(type, 'id', '<s> lockable device released');

not released
Entry/out(type, 'id', '<s> lockable device not released');

when(not '/physically_in_position')/

<c> release device[
'track'.'/associated_device_releasable' and
'/physically_in_position' and
not '/blocked']/

when('/physically_in_position')/

<c> cancel lockable device release[
'/release_withdrawable']/

Lockable device FI/
'/release_withdrawable' := #true;

'/blockable' := #true;

'/secured_in_position' := ('/physically_in_position' and in_state(#'not released'));

'/failed' := (not '/physically_in_position' and in_state(#'not released'));

Figure 13: State Model of a Finnish Lockable device.

A HAL level state diagram, however much more closely reflects the physical world and thus Figure 13
clearly shows the stages through which a lockable devices passes as it is used.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 27/31

timer stopped

route
overlap

not timing release timing

not locked
Entry/foreach 'TVPs in overlap' do send '<ic> release overlap';

timer stopped

body
train at exit signal

Entry/foreach 'TVPs in path' where
('/is_route_body_locked') do send '<ic> release locking';

occupied
after('entry signal'.'signal'.'replacement_delay')/call 'entry signal'.'signal'.'<ic> set signal to stop';

turn back
when(exists 'TVPs in path' is_true '/preceeding_tracks_free')/
foreach 'TVPs in path' where ('/preceeding_tracks_free') do call '<ic> destination release';

route set up

revocable disruption
Entry/call 'entry signal'.'signal'.'<ic> set signal to stop';

proceed
Entry/if 'DOS_route' then send 'entry signal'.'signal'.'<ic> set DOS proceed'
else send 'entry signal'.'signal'.'<ic> set full proceed'; 'signal_cleared' := #true;

distruption

unused

monitor
Exit/foreach 'signals in path'.'signal' where (not '/aspect_shown' = #stop) do call '<ic> set signal to stop';

route
overlap

not timing release timing

not locked
Entry/foreach 'TVPs in overlap' do send '<ic> release overlap';

timer stopped

body
train at exit signal

Entry/foreach 'TVPs in path' where
('/is_route_body_locked') do send '<ic> release locking';

occupied
after('entry signal'.'signal'.'replacement_delay')/call 'entry signal'.'signal'.'<ic> set signal to stop';

turn back
when(exists 'TVPs in path' is_true '/preceeding_tracks_free')/
foreach 'TVPs in path' where ('/preceeding_tracks_free') do call '<ic> destination release';

overlap

not timing release timing

not locked
Entry/foreach 'TVPs in overlap' do send '<ic> release overlap';

timer stopped

not timing release timing

not locked
Entry/foreach 'TVPs in overlap' do send '<ic> release overlap';

timer stopped

body
train at exit signal

Entry/foreach 'TVPs in path' where
('/is_route_body_locked') do send '<ic> release locking';

occupied
after('entry signal'.'signal'.'replacement_delay')/call 'entry signal'.'signal'.'<ic> set signal to stop';

turn back
when(exists 'TVPs in path' is_true '/preceeding_tracks_free')/
foreach 'TVPs in path' where ('/preceeding_tracks_free') do call '<ic> destination release';

train at exit signal
Entry/foreach 'TVPs in path' where
('/is_route_body_locked') do send '<ic> release locking';

occupied
after('entry signal'.'signal'.'replacement_delay')/call 'entry signal'.'signal'.'<ic> set signal to stop';

turn back
when(exists 'TVPs in path' is_true '/preceeding_tracks_free')/
foreach 'TVPs in path' where ('/preceeding_tracks_free') do call '<ic> destination release';

route set up

revocable disruption
Entry/call 'entry signal'.'signal'.'<ic> set signal to stop';

proceed
Entry/if 'DOS_route' then send 'entry signal'.'signal'.'<ic> set DOS proceed'
else send 'entry signal'.'signal'.'<ic> set full proceed'; 'signal_cleared' := #true;

distruption

unused

revocable disruption
Entry/call 'entry signal'.'signal'.'<ic> set signal to stop';

proceed
Entry/if 'DOS_route' then send 'entry signal'.'signal'.'<ic> set DOS proceed'
else send 'entry signal'.'signal'.'<ic> set full proceed'; 'signal_cleared' := #true;

distruption

route release timer

residual release

idle
Entry/'DOS_route' := #false;
'signal_cleared' := #false;

pending

initiate

cancellation
Entry/foreach 'TVPs in path' where ('/TVP_marked' or '/is_locked') do send '<ic> release locking';
foreach 'points in path' where ('/point_marked' or '/is_locked') do send '<ic> release locking';

/

when(not '/signalling_conditions')/

<c> set DOS route[
'DOS_permitted']/
'DOS_route' := #true

after(
'overlap_release_timer')/

when('/signalling_conditions')/

<c> cancel route/

when('/all_train_in_DT' and 'TVPs in overlap' \= [])/

when('/destination_release')/

when('/monitoring' and
'entry signal'.'/reclearing')/

<c> cancel route[
'/immediately_cancellable']/

/

Route/'direction' := pDirection; 'route_type' := pType; 'DOS_permitted' := pDosPermit; opposing_permitted := pOpposePermit;
if pOverlapReleaseTime = #pOverlapReleaseTime then 'overlap_release_timer' := 0 else 'overlap_release_timer' := pOverlapReleaseTime;
'/signalling_conditions' := (forall 'track elements in path' is_true '/monitoring_condition_ok');
'/immediately_cancellable' := ((not '/signalling_conditions' and not 'signal_cleared') or
 ('signal_cleared' and not (exists 'approach track' where ('next' = []) is_true '/valid_approach_occupation') and
 forall 'main route tvp' is_true ('/is_main_route_locked' and not '/change_in_occupation')));
'/cancel_with_delay' := ('signal_cleared' and (exists 'approach track' where ('next' = []) is_true '/valid_approach_occupation') and
 forall 'main route tvp'.'tvp' is_true (not ('/track_became_occupied')));
'/all_train_in_DT' := ('/initiated' and not (exists 'TVPs in path' is_true ('/is_route_body_locked' and not 'destination_tvp')));
'/destination_release' := (exists 'exit signal'.'signal'.'track in rear' is_true ('/occupied') and '/all_train_in_DT' and not exists 'TVPs in path' is_true '/moveable_element_in_DT');
'/residual_releaseable' := (exists 'main route tvp' is_true (not '/is_main_route_locked') or exists 'main route tvp'.'tvp' is_true '/track_became_occupied');
'/train_in_route' := (exists 'TVPs in path' is_true '/sequentially_occupied');
'/disrupted' := (in_state(#'monitor'.'unused'.'revocable disruption'));
'/available' := (forall 'track elements in path' is_true '/route_precondition_ok');
'/monitoring' := (not '/train_in_route' and forall 'TVPs in path' is_true '/subroute_monitoring_ok');
'/initiated' := (not (in_state(#'idle')));

<c> set route['/available']/
foreach 'TVPs in path' do send '<ic> prepare track element';

after('entry signal'.'signal'.'cancellation_timer_route')/

after('entry signal'.'signal'.'residual_timer')/

when(not exists 'track elements in path' is_true ('/is_locked'))/

when(not (exists 'track elements in path' is_true ('/is_locked')))/

<c> emergency cancel[
'/cancel_with_delay']/

<c> cancel residual route[
'/residual_releaseable']/

when('/available' and exists 'main route tvp' is_true ('/DOS_route_occupation'))/
foreach 'main route tvp' do send '<ic> prepare track element';

when(not (exists 'main route tvp' is_true ('/DOS_route_occupation')))/

when('route_type' = #shunt and exists 'opposing signals' is_true '/train_turned_back')/

when('/train_in_route')/

when(not '/train_in_route')/

<c> set route['route_type' = #shunt]/
send 'entry signal'.'signal'.'<c> reclear signal'

when('/monitoring')/

when('exit signal'.'signal'.('/aspect_shown' = #stop) and
exists 'TVPs in overlap' is_true ('tvp'.'/occupied'))/

when(exists 'main route tvp' is_true ('/occupied_physically'))/

<c> cancel residual route[
'/residual_releaseable']/

when('/destination_release')/

Figure 14: State Diagram of “Route”

Nonetheless, as Figure 14 shows, not all the state diagrams of logical elements are small and devoid of
complexity.

3.5 Other modelling aspects

Object Constraint Language

The Object Constraint Language (OCL) could be considered as a further diagram type of the UML.
However it is not graphical, but rather a textual and very formal language used to express side-effect-
free constraints on the object model. OCL can be used in a requirements model to define safety
invariants and pre- and post-conditions. However, in practice the OCL syntax proved to be a limiting
factor for its acceptance and consequently in the GENERIS model xUML a variant of OCL is used for
expression constraints in an English-like syntax, but with the same semantics as OCL itself.

Stereotypes

Stereotypes are a mechanism to extend the UML as well as to adapt it to project or domain specific
needs. Basically it is some kind of “meta classification” that potentially could be applied to any element
of the UML. Stereotypes can be considered as standardized name-prefixes (enclosed in guillemots « »

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 28/31

or < >) for those elements that imply some stereotype-specific properties of that element. For example in
the context of an interlocking system, a class could be used to represent a physical point in the field
(stereotype «pe» for “physical element”). An overview of the use of stereotypes in modelling interlocking
system requirements are further described in the Appendix B of this document.

3.5.1 Results

During the development of the requirements model, the results were produced and they also need to be
maintained. Although this is not something particular to models created in UML, the process is equally
valid for it. This effects the following artefacts:
• Textual requirements stored in the DOORS Database
• UML models stored in ARTiSAN Studio
• Data Preparation files for Simulations, i.e. the files belonging to a standalone simulation of a specific

scenario based on the UML model
• Data setting for the generation of the Graphical User Interface.
• Additional Word documents such as generated model reports, test documents, this guideline or other

explanatory documents.

Section 4 – CONCLUSIONS

In this document, we described the process by which the model has been derived from the DOORS

functional requirements. The application of this methodology lead to the Generis model, a conventional

interlocking functional representation. It is worth mentioning the powerful concepts used such as

inheritance which constitute a complementary way to identify common core functionalities by virtue of

generalization/specialization.

The modelling style, paradigm and syntax illustrated in the document should be useful not only for the

INESS modelling work for the model upgrades towards the ERTMS functions, but also for other

activities such as model transformation and validation.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 29/31

Section 5 – ANNEXES

Appendix A UML Notation

The following figure shows the most important elements of a UML use case diagram:

an actor

a use case an extending
use case

a specialized
use case

an included
use case

«include»

«extend»

Figure A-2: Use Case Diagram Notation

The following figure shows the most important elements of a UML class diagram:

another package

a class
{Abstract}

an attribute
void an operation ()

an association class

another class
a class

{Abstract}

an attribute
void an operation ()

an association class

another class

a package

a specialized class

another attribute

an aggregate class* 1

wholepart

1..
a role another role

a dependency

Figure A-3: Class Diagram Notation

The following figure shows two aspects of the same class “Person”: “Customer” and “Supplier”.

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 30/31

Person (Customer)

creditability

Person (Supplier)

reliability

sales order

purchasing order

*1

*1
1

1

Figure A-4: Aspects Example

The following figure shows the most important elements of a UML state diagram:

a concurrent state
a state region

a state another state
Exit/exit action

another state region

a state another state

H

a state region

a state another state
Exit/exit action

a state another state
Exit/exit action

another state region

a state another state

H

a state another state

H a substate

another substate
Entry/entry action

condition

super state
event5/action5

a substate

another substate
Entry/entry action

condition

final state

initial state
event1/

event2/

event3[guard]/

event3/action3

event4/

event2/

[no]/action 5

[y es] /

event5/

event1/

history state synchronization bar

Figure A-5: State Diagram Notation

The following figure shows the most important elements of a UML sequence diagram:

instance2
:a class

instance1
:a class :another class

Start Parallel
Start Iteration

An Interaction event1
An Interaction event1

End Iteration
Also Parallel

An Interaction event3
Start Selection

An Interaction event4
Outcome

Start Iteration
An Interaction event5

End Iteration
End Selection

End Parallel

Start Iteration
An Interaction event1

An Interaction event1
End Iteration

An Interaction event1
An Interaction event1An Interaction event1

Also Parallel
An Interaction event3

Start Selection
An Interaction event4

Outcome
Start Iteration

An Interaction event5
End Iteration

End Selection

An Interaction event3
Start Selection

An Interaction event4
Outcome

Start Iteration
An Interaction event5

End Iteration
End Selection

Start Selection
An Interaction event4

Outcome
Start Iteration

An Interaction event5
End Iteration

End Selection

An Interaction event4
Outcome

Start Iteration
An Interaction event5

End Iteration

Start Iteration
An Interaction event5

End Iteration
An Interaction event5

an anonymous
instance

an architectural boundary

Figure A-6: Sequence Diagram Notation

 Grant agreement no.: 218575 Deliverable report – WS D _ D 1.5

INESS_WSD_Deliverable D.1.5_SB_Finalised_Report_Ver2009-05-29 Date: 29-05-2009
Revision:SB finalised Security: Confidential – Consortium Only Page 31/31

Appendix B Stereotypes

The following UML stereotypes were used in the GENERIS model:

Classes and Packages of Classes:
• <system> system
• <field> controlled by the system, but external to it.
• <pe> physical element in the rail yard
Events:
• <c> command from an actor to the interlocking system
• <s> status indication from the interlocking system to an actor
• <dv> detected value sent by a physical element to the interlocking system
• <pe> steering value sent by the interlocking system to a physical element
• <ic> interlocking system internal command
• <ee> external event influencing the status of a track element
•

The following picture illustrates the general usage of stereotypes for events:

IL-K object

CONTROL object

use case

hardware

«s» (status)
«c» (command)

«c» (command)

«ic» (internal command)

«is» (internal status)

«s» (status)

«dv»
(detected value)

«sv»
(steering value)

«t» (Time)

Commands
(intention)

Status
(detection)

IL-K object

CONTROL object

use case

hardwarehardware

«s» (status)
«c» (command)

«c» (command)

«ic» (internal command)

«is» (internal status)

«s» (status)

«dv»
(detected value)

«sv»
(steering value)

«t» (Time) «t» (Time)

Commands
(intention)

Commands
(intention)

Status
(detection)

Status
(detection)

Figure B-7: Event Stereotypes

